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Abstract  

The Kostant quantization method is applied to the Galilean group. 

1. Introduction 

The abstract mathematical setting for studying classical mechanics is that of 
a symplecfic manifold (X, ~).  X is the phase space and £2 defines the Poisson 
bracket (Abraham, 1967). The requirement of invariance under a Lie group G 
of space-time transformations leads directly to the study of Lie group actions on 
symplecfic manifolds (X, ~2) that leave invariant the form f2. Following Arens 
(1971), a classical system (X, ~ )  is considered to be elementary if the action 
of G on X is transitive. Kostant (1970)and Renouard (1969)have shown how 
to classify such elementary systems, and Kostant (1969) has shown that often 
they can be quantized to obtain a unitary irreducible representation of the 
group G. This paper is a study of Kostant's method when G is the Galilean 
group. The Poincar6 group has been considered in this context by Renouard 
(1969). For Galilean systems the central extensions of G arise as naturally, and 
play the same role in classical mechanics as in quantum mechanics. That is, 
they introduce the mass and give rise to the only systems with a clear particle 
interpretation. The quantization of these systems is shown to be the projective 
unitary irreducible representations of G, which are well known (Levy-Leblond, 
(1963) to describe the free Schroedinger particles. Souriau (1970) has obtained 
this result by his own Slightly different quanfization technique. The symplectic 
manifolds associated with the Galflean group itself are shown to give rise to all 
the true representations classified I-4V by In6nti and Wigner (1952). Some of 
these have recently been shown (Sen, 1973) to have an unusual physical 
application. 

This journal is copyrighted by Plenum. Each article is available for $7.50 from Plenum 
Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. 



8 B~z 

2. Notation and General Theory 

If G is any Lie group with multiplier group H2(G, T), then G a denotes the 
central extension of G, by the circle group T, corresponding to the multiplier 
a in H2(G, 7). In the language of Kostant (1969) an elementary classical G 
system is defined to be a strongly symptectic homogenous G-space.Renouard 
(1969) has shown that such spaces cover an orbit of the coadjoint action of 
one of the G a in the dual g* of its Lie algebra g~. The G actions are obtained 
directly from the G a actions. Having obtained the classical systems (X, ~2) as 
the orbits of the G a actions in g*, their quantization may be achieved by 
either of  two methods. 

One approach is to construct a line bundle L over X with curvature ~2 and 
then to define a ttflbert space in which G a acts unitarily by taking certain 
sections of  L. The other (Kostant, 1969) is to construct a sequence of sub- 
groups of Ga and apply Mackey's induction theory (Mackey, 1968) to obtain 
a unitary representation of Ga. This second method is described briefly below 
and applied later in the work. 

The coadjoint action of a Lie group G on g* written g o ~ *  for g E G and 
~* E g*  is defined by 

where ~ E  g, Adis the adjoint representation of G and ( , )is a pairing of 
g with g*. Each orbit of this action is diffeomorphic as a G-space to G/K, where 
K is its stability group. Let ~ be a fixed point in g* with stability group K; 
then an invariant polarization for the orbit through ~* is a complex subalgebra 
b of the complexification ge of g with the properties (i) ~ C [? where f is the 
Lie algebra of K, (ii) ~ is Ad(K) stable, (iii) dime ge/g = ½ dim~ g / f ,  where 
dim F means dimension with respect to the field D z , (iv).( * ,  [b, hi) = 0, 
(v) t 1 + ~ is a subalgebra of ge. A polarization I~ defines two subalgebras b = 
b N g and e = (~ + 4) C~ g, which in turn define connected subgroups Do and 
Eo of G. D o and Eo are normalized by K, so that D = DoK and E = EoK are 
also subgroups of G. Clearly K C D C E C G. This is the sequence of groups 
alluded to above. Now 2re X/Z---1 * is a homomorphism from ~ to the Lie algebra 
X/- I  N of T. The integrality condition (Kostant, 1969) requires that this 
homomorphism should lift to a character X of/(.  )4 is then extended, in a unique 
way, to a character of D which is induced holomorphically to E. The final step is 
to induce from E to G in the usual way. It is not always the case that X is 
extendable to D or that the representation of G, obtained in this way, is irre- 
ducible. 

3. The Galilean Group 

From this point on G is the GaliIean group. Its elements g are the quadruples 
(W, b, v, u), where W ~ S0(3, R), b E N, v E N 3, u E N 3. Now the product gg' 
is (WW', b + b ', Wv' + v, Wu' + u + b 'v), where g'  = (If', b', v', u'), giving G the 
semidirect product structure [SO(3,N) x It~] ® R 6. Bargmann (1954) has shown 
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that H2(G, T) ~= R .  The following form may be chosen for the multipliers: 
o m (g, g ' )  = exp x/Z--lm (½b'v 2 + Wu' .  v), where m is a real parameter that changes 
the equivalence class in H2(G, T). The multiplication laws for the G o are (g, t) 
(g', t') = (gg', o(g,g')t t ' )  where t a n d  t '  are in T'. 

As a vector space g is isomorphic to so  (3, R) ® R 7 and each element z~ of 
g can be written as a quadruple ( ~ ,  3, ~, ~) for ~ E  so (3, R),  3 E R,  wE R 3, 

E R 3, in terms of which the Lie bracket is [6,  z~'] = (~e~ '  - ~ ' ~ ,  0, ~ '  - 
t ! ¢ 

for z~ = ( ~ ,  ' ' J ) .  Defining ei (i = 1, 2, 3) to 
be the unit vector in the ith direction of  R 3, the following basis for g is adopted: 

j o i  = (J/, 0, 0, 0), 3o = (0 ,1 ,  0, 0) 

voi = (0, 0, % 0), ~oi = (0, 0, 0, ei) 

Ji(i = 1, 2, 3) being the basis of  so  (3, R)  with the property A,(J/, ~(k~ = 26ik 
with respect to the Killing form A on go (3, R).  If  elements ~ of  g are 
written ( ~ *  3 "  ~* ~*) and g* is identified with go (3, R)  ® R 7 by the 
pairing 

3", - * ) ,  A -)> = + + + - *  . .  

then the coadjoint action of G on g* is g o z~* = (W~eJ*W -1 + Wv*A v + Wa *A u, 
3" - W~* • v, W~* +bW~*,  Wa*) where f o r x  E R 3 a n d y  E R a ,  x Ay is the 
element of  go (3, R) given by (x A y ) z  = x .  zy - y .  zx  for z ~ N 3. The adjoint 
representation of G being 

Ad(g)z~ = ( W ~ W  -1 3 , W~ - W~,W-lv, W~W- l (bv  - u) - bWz~ + We~ + va) 
• . *  * * 

Four classes of  orbit in g * are now consldered; 2oi, go, voi, u*i (i = t ,  2, 3) is 
the basis of  g* dual to that of  g with respect to the pairing ( , ). 

* 
(i) As representatives of  orbits in this class the points ~ = Xv~: + Pao3 may 

be taken. Each pair of  positive numbers X and p defines an orbit. The stability 
group K is the set of  elements (I, 0, (0, v2, 0), (0, 0, ua)) of  G, where v2 and u 3 
are arbitrary and I is the identity of  SO (3, R). Hence the topology of these 
orbits is that of  SO(3, R) x R s. The subalgebra t) with the basis vol , vo2 , yon , 
e01, ~e02, a03 is easily shown to satisfy the conditions of an invariant polarization 
for this class of  orbits. D defines the subgroups D and E to be D = E = 
((/, 0, v, u): v E ff~3 u E R3}. The integrality condition is satisfied without rest- 
fiction on X and 

(li) Representatives for these orbits may be taken as z~* = PJ~a + P~oa,* 
obtaining each orbit once for real p and positive p. The stability group K is 
S0(2 ,  gO) ® ((vl, v2, 0), (0, O, ua)} where vl, v2, and u 3 are arbitrary. It follows 
that each orbit is topologically S:  x R 4. An invariant polarization b for this 
class is given by the basis dements  Jo3, VOl, ~02, voa, ~oI, ~o2,~eoa • Thus 
D = E = SO(2,  E )  ® R 6. Integrality requires that 27rp be an integer. 

(iii) For real p and e and positive/a this class comprises the orbits through 
• * . *  * * . 

the points ~ = P2o3 + eao + P~o3-K is the group (S0(2 ,  ~ )  x gO) ® frO, O, va) , 
u} with v s ~ ~ and u ~ R s. These orbits have the topology o f S :  x R2. 
D can be defined by the basis elements v~03, 30, ~01, v02, v03, gO1, e~02, gO3, which 
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implies that D = E = (SO(2, R) x N) ® R 6. 2fro must be an integer for the inte- 
grality condition to be satisfied. 

(iv) * "* e ~  for real p e are = P ] o s  + and taken as representatives for this 
class of orbits.K is the group (SO(2, N) x N) ® •6 and each orbit has the 
topology of S 2. The basis 

jo3 ,  j o l  + x/ -l)o2, -oI ,   o3,  ol,  o2,' o3 

defines an invariant polarization. D = E and E = G. Again the integrality condi- 
tion for 6 "  requires 2zrp to be an integer. 

For each nontrivial a in H 2 ( G ,  T), ga is the vector space isomorphic to 
g ® x/-~--1N. A pairing ( , )a of go with g ® ~ ' 2 ]R  can be defined by 

< {6*, = <6*, 6> -/*i 

in terms of which the coadjoint action o fG  a on go, when o = o m is 

(g, t) o {~* X/Z---l/*} = {g 06* + m / * ( - v  A u, ½v 2 , -  v, u - by),  ~/ -1 /*}  

The adjoint representation of Go being 

Ad(g, t){c~, x/~-]f} = {ad(g)z~, X/Z2](f + ½m~v 2 

+ mb(W~z~W-Jv) • v - m ( W ~ W - l u )  . v  - m u .  W~) 

The basis of g given above is augmented by the element (o = (0, 0, 0, 0, x/Z---l) 
to form a basis for ga- Its dual element is denoted g~. Only two topologically 
distinct classes of orbit occur: 

"* + (a) The first class consists of those through the points COjo 3 + 
where co and r are nonzero and e is arbitrary. The stability group for this class is 
K = S 0 ( 2 ,  N)  x N x T and the topology of the orbits is that of S 2 x N 6. The basis 
jo l ,  jo2 + x/Z-]jo3, ~o, ~ol, ~o2, ~o3 defines a suitabile invariant polarization. 
D = (SO(2, R) x R) ® {(v, O, t)} and E = (S0(3, R) x R) ® {(v, 0, t)}, where 
v E R s and t E T. Integratity requires 27rco and ~ to be integer s, 

(b) The second class consists of  those through the points eS~ + (~-/2rr)~, for 
nonzero ~- and arbitrary e. K = SO(3, R) x R x T, hence the orbits are topologically 
R 6. An invariant polarization can be defined by the basis ~ol, ~o2, Jo3, ~o, 
vm, vo2, ~o3, which gives D = E  = (SO(3, R) x R) ® {(v, 0, t)}. r has to be an 
integer for the integrality condition to be satisfied. 

4. Discuss ion  a n d  Conclus ion  

Comparison with the paper of Inonu and Wigner (1952) reveals that the classes 
(i)-(iv) of representations above correspond to their classes I-IV; in particular 
all unitary irreducible representations of G arise by quantizing orbits. The 
representations in classes (a) and (b) correspond, when r = -1 ,  to the projective 
o m representations of G, those with spin zero being in (a). The parameter e in 
(a) and (b) is the arbitrary constant of energy well known in the quantum case 
not to alter the equivalence class of the projective representation (Levy-Leblond, 
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1963). That equivalent classical systems are obtained by choosing e arbitrarily 
is immediate from a theorem of Renouard (1969). 

The only symplectic forms that give rise to the usual Poisson bracket belong 
to those orbits in class (b) for which 7" = - 1. Coordinates (p, q); p E R 3, q E R 3 
can be defined for this case that transform, respectively, as momentum and 
position under the G actions. In these coordinates the form ~2 is E i dpi x dqi. 
The generator of time translations can be computed as 

1 
~ ,  pi 2 + e 

2rn 
i 

which identifies these systems as the free Newtordan particles with mass m. 
The symplectic forms for the orbits in (b) are as in (a) plus a form on $2; these 
systems may be interpreted as classical nonrelativistic particles with spin (Arens, 
1971). The forms for the orbit classes (i)-(iii) do not separate (in natural 
coordinates) into a form on the vector part plus a form on the rest. For example 
in (iii) they are given locally by 

~2 = (p/sa)dsa x ds2 + g(dsl x dx + ds2 x dy) 

where (sl, s2, sa) are cartesian coordinates for S 2 and (x, y)  are coordinates for 
N 2. These systems lack interpretation as free particles, as do their quantizations 
(In6nii and Wigner 1952). 

The polarizations given are not the only ones possible. For example the 
basis Jo3, ~o, ~01, ~02, ~03, ¢~02, gOt defines a further invafiant polarization for 
the class (ii) orbits. In fact this polarization gives a sequence of groups that 
corresponds to applying Mackey's semidirect product theory to G expressed 
as E(3) ® N4, where E(3) is the Euclidean group in three dimensions, instead of 
of (SO(3, R) x R)  ® R 6. 

The half-integer spin projective representations with nonzero mass may be 
obtained by replacing S0(3, R) by its cover SU(2, C), as may the projective 
zero-mass representations. 

Appendix 

The following are the properties of the Killing form A and the A product 
used to derive the coadjoint actions quoted in the text: 

(1) [co, x Ay] -- cox Ay +x A co for ¢oeSO(3,R), andx ER3,y  E R  3. 
(2) A(col, co2) = Yr(coaco2) for 601 and co2 ESO(3 ,R)  
(3) Tr(cox A y) = 2x- coy 
(4) A(co, x a y) = 2x- coy 

The following theorem is that of Renouard, referred to in text: 

ThSorOrne. Si (X, ~2) est un Gespace homogene symplectique, G est 
fortement symplectique sur (X, ~2) si et seulement si il existe une 
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G-orbite Y C g ~ telle que (X, gZ) soit un revetement de (Y, coy) comme 
G-espaces homogenes symptectiques. 

Si Y'  c g ~ est une autre orbite possedant la meme propriete,  on a 
Y' = f +  Y r ' ( x ) = f +  r ( x ) p o u r  tout  x E X, a v e c f E  ~ off ~ = 

*( ( f ~ g ,  f, [~,~l>=O} 
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